
R Tutorial

Gerardo Ferrara∗
Master in Economics and Complexity

University of Turin

Contents

1 Introduction 3
1.1 Why R? . 3
1.2 Why not just use a spreadsheet in Excel? 3

2 The basics 4
2.1 The window and menu . 4
2.2 Interrupt current R computation 6
2.3 Accessing Help in R . 6

3 Getting data into R 7
3.1 Reading data sets . 7
3.2 Reading data from a line . 9
3.3 Saving data sets . 9

4 Saving your commands 10

5 Means, correlations, and other statistics 11
5.1 Summary: What is in the data set? 11
5.2 Descriptive statistics . 11

6 Regression Analysis 12
6.1 Simple linear regression model 12

7 Charts 16
7.1 Scatterplots . 16
7.2 Histograms and density plots 16
7.3 Kernel density plots . 18
7.4 Pie charts . 19

∗For the most recent version of this tutorial, its corresponding data files, and related
examples, please refer to the following web page: www.gerardoferrara.com

1

8 Manipulating data sets 21
8.1 Extracting data from data frames 21
8.2 Adding columns (variables) to a data frame 23
8.3 Combining data frames . 23
8.4 Merging data frames . 25

1 Introduction

R is an open-source computer language for statistical computing widely used
in academia and increasingly in business. The R software was initially writ-
ten by Ross Ihaka and Robert Gentleman in the mid 1990s. Since 1997, the
R project has been organized by the R Development Core Team. It provides
a coherent, flexible system for data analysis that can be extended as needed.

As a result of continuing improvements in the efficiency of R’s coding
and memory management, R’s routines can readily process very large data
sets.1 With very large datasets, the main issue is often manipulation of
data, and systems that are specifically designed for such manipulation may
be preferable.

This tutorial aims to be useful as an accompaniment to a standard in-
troductory statistics book. It is designed to allow individuals who have a
basic grounding in statistical methodology to work through examples that
demonstrate the use of R for a range of types of data manipulation, graphical
presentation and statistical analysis.

1.1 Why R?

R is an extremely powerful program and includes some features that make
it easy to extend or to share knowledge among users. Here are points that
potential users might note:

• R has extensive and powerful graphics abilities that are tightly linked
with its analytic features.

• The software is developing rapidly; new features and abilities appear
every few months.

• It is just as reliable as any statistical software that is available and is
exposed to higher standards of scrutiny than most other systems.

• The R community is widely drawn from application area specialists as
well as statistical specialists.

1.2 Why not just use a spreadsheet in Excel?

Spreadsheet programs, like Excel, are tools that everyone uses, and have a
friendly visual interface. Why don’t we just use them? Here are three good
reasons:

• Excel is not efficient when we need to analyze large datasets, with many
variables (columns) and 10,000 or more observations (rows). Further-
more, it is not possible to calculate a correlation matrix for columns

1For example, on a Unix machine with 2GB of memory, we can efficiently compute a
regression with 500,000 cases and 100 variables.

3

that are not contiguous. The same holds for dependent variables in a
linear regression.

• Excel has limited built-in statistical tools.2

• Excel has limited data manipulation capabilities.

2 The basics

The software is obtained from the CRAN (Comprehensive R Archive Net-
work), which may be reached from the web site http://www.r-project.org.
It is sufficient to follow the installation instructions appropriate for your op-
erating system. Packages that do not come with the base distribution must
be downloaded and installed separately.

R is a functional language.3 It is a language that uses standard forms
of algebraic notation, allowing the calculations such as 1 + 2, or 28. Beyond
this, most computation is handled using functions. The action of quitting
from an R session uses the function call q().

2.1 The window and menu

The window automatically opens when you start R. While a command-driven
program seems an anachronism, being able to type commands and save them
in file (called "Rd Document") has many advantages:

• You can save all the commands that lead to your results and also add
comments to it.4

• Some text editors recognize R language and structure making it easy
to locate errors (e.g. UltraEdit).

• You can redo the analysis with little extra work if you change data.

• You can set up an example analysis and use it as a template for other
analyses.

Like most programs, R has a toolbar and a menu bar with pull-down
menus that you can use to access many of the features of the program.
The toolbar contains buttons for more commonly used procedures. To see
what each button does, hold the mouse over the button for a moment and a
description of what the button does will appear. The screenshot in figure 1

2VBA is mandatory to expand its capabilities.
3The structure of an R program has similarities with programs that are written in

C++. Important differences are that R has no header files, most declarations are implicit,
there are no pointers, and vectors of text strings can be defined and manipulated directly.

4Everything after "#" is ignored.

4

Figure 1: R Toolbar
The screenshot below highlights some of the icons available in the toolbar.

highlights some of the icons available in the toolbar. Among other things it
has:

• The Open and Save icons.

• The Break icon, which allows you to interrupt (not suspend) R from
processing commands.

Furthermore, Table 1 provides a summary of the main pull-down menus
and their functions. The R Graphics window opens automatically when you
create a graph. To bring a graph to the foreground, click on the graphics
window or go to the pull-down menus and choose the R Graphics window.
Graphs can be saved in various formats, such as jpg, png, bmp, ps, pdf, and
so on.

When you open R, you start with a window called R Console. The console
is the place where all the numerical outputs are printed. You can actually
run all of your analyses and computations from the console, but once you
close the software, everything that is printed in the console window (not the
workspace) is lost. Therefore I strongly recommend you to run everything
from a script file that you can save and load. A script is a text file with
the .Rd extension in which you write commands meant to be sent to R. You
create a script file through File -> New script. Notice that a script always
opens in a new window, also embedded in the RGui window, which is called
Untitled until you save it through File -> Save as and give it a name. You
load a previously saved script through File -> Open script.

5

Table 1: Summary of the main pull-down menus
R has a menu bar with pull-down menus that you can use to access many of the features
of the program.

Menu Functions
File Open source R code; create; open and save script; load and save

workspace; load and save history; display files; change working
directory; print files; exit R.

Edit Copy; paste; select all; clear console; data editor; R configura-
tion window editor.

Misc Stop current computation; buffer output; list objects in the
memory; remove all objects; list search path.

Packages & Data Load; install; update packages; set CRAN mirror; select repos-
itories; install packages; install packages from local zip files.

Window Cascade and tile R console windows; arrange icons and switch
among windows.

Help Get help on R procedures and commands; connect to the R
website for more help information.

2.2 Interrupt current R computation

On occasion, you could need to interrupt R computations. To stop R, either:

• Click on the red stop octagon.

• Press the ESC button on your keyboard.

2.3 Accessing Help in R

R provides help files for all its functions. To access a help file, use the Help
pull-down menu, or type ? followed by a function name in the R console.
For example, to get help on the "print" function, type:

> ?print

There is extensive online help in the R system. The best starting point
is to run the function help.start. This will launch a local page inside your
browser with links to the R manuals, R FAQ, a search engine and other
links. In the R Console the function help can be used to see the help file of
a specific function (e.g. mean).

> help(mean)

We can also use the function help.search to list help files that contain a
certain string (e.g. corr).

6

> help.search("corr")

3 Getting data into R

R generates and stores datasets in .txt format (with extension). Data can
also be found in formatted data files, such as a file of numbers for a single
data set, a table of numbers, or a file of comma-separated values. Even Excel
sheets can be imported without problems. Moreover, specialized programs
could convert files from one format to another (e.g. Stat/Transfer).

3.1 Reading data sets

There are many ways to open a data file. In addition to new functions, many
packages contain a collection of built-in data sets that can be referenced by
name. For example, to load a data set without uploading the entire package,
could be done in this manner:

> data(SP500, package="MASS")

However, this will not load in the help files, if present, for the data set or
the rest of the package. Alternately, to load a data set including its package,
we could write:

> library(MASS)
> data(SP500)

See Table 2 for more details on data and library. Usually, data sets that
store several variables are stored as data frames. This format combines
many variables in a rectangular grid, like a spreadsheet, where each column
is a different variable, and usually each row corresponds to a different time
period. This conveniently allows us to have all the data vectors together in
one object.

R can read many different formats of data, but as far as this course
is concerned, you will only use the simplest format which is a text file
with the .txt extension. To import data in the R environment you use the
read.table(file.choose(), header=TRUE) command. After sending the
command, a dialog window pops up and you can browse your data file. We
set the optional argument header to header=TRUE if your data file fea-
tures variable names in the first row, otherwise we write header=FALSE
in the function. For a complete list of possible arguments to the read.table

7

command, type ?read.table in the R console. Most arguments are optional,
with the exception of the file name from which to read the data. See Table
3 for more details on read.table

Table 2: library() and data()
When dealing with data sets and packages, here is a list of other basic commands and
their effect:

Command Effect
library() List all the installed packages.
library(pkg) Load the package pkg. Use lib.loc=argument to

load package from a non-privileged directory.
data() List all available data sets in loaded packages.
data(package="pkg") List all data sets for this package.
data(ds) Load the data set ds.
data(ds,package=("pkg")) Load the data set from package.
?ds Find help on this data set.
update.packages() Contact CRAN and interactively update installed

packages.
install.packages(pkg) Install the package named pkg. This gets package

from CRAN. Use lib=argument to specify a non-
privileged directory for installation.

Table 3: Some commonly used arguments for the command read.table
When dealing with data sets, here is a list of other basic arguments and their effect:

Argument Effect
file The complete path and filename of the file to be read.
header Indicates whether the first line of the file is a header line, containing

the names of the columns. By default, this is FALSE. To indicate
that a file contains a header row, use header = TRUE.

sep The character acting as a separator between values within a row. Often
this will be a comma, a space, or a tab. To indicate a tab, use \t; to
indicate any whitespace, use \w.

nrows An integer value specifying how many rows should be read. By default,
read.table will read the entire file. The nrows argument allows you
to specify a smaller number, which will start from the first line of the
file.

skip An integer value specifying how many rows should be skipped from
the top of the file. By default, read.table will start from the first
line. The skip argument can be useful if a file contains multiple lines
of header information that should not be read in.

dec The character used to indicate a decimal. By default, this is a dot: "."

8

3.2 Reading data from a line

Use scan to read data from a line. The following is an example that reads
price and volume data of 4 periods and puts them into a dataset named
"sample". This strategy makes the most sense when you have a small amount
of data to read in. The variables price and volume can be created, as follow:

> price <- scan()
> 1: 0.9 1.2 1.1
> 4:
> volume <- scan()
> 1: 100 200 150
> 4:
> sample <- data.frame (price, volume)

Here, R is prompting you to enter another value, which would be the 4th
value in the vector you are entering. If you are finished entering data, hit
return again. After we call scan, R prompts you with the 1:, meaning the
first thing you enter will be the first element in the vector of values.

Alternatively, vectors can be made with the c () function, which combines
its arguments. For example:

> price = c(0.9, 1.2, 1.1)
> volume = c(100, 200, 150)

3.3 Saving data sets

We usually use write.table to export an R dataset into a different format. The
write.table() function has many of the same arguments as read.table().
For example, we can save the file mytrial as a ","-delimited textfile format
to the C:/Mydata directory with this command:

> write.table(mytrial, "C:/Mydata/mytrial.txt", sep = ",")

To export it as .csv format, you can use the write.csv variant:

> write.csv(mytrial, "C:/Mydata/mytrial.csv")

Here, by default, sep = "," and dec = ".".

9

4 Saving your commands

By default, R keeps track of all the commands you use in a session. This
tracking can come in handy if you need to reuse a command you used earlier
or want to keep track of the work you did before. These previously used
commands are kept in the history.

You can browse the history from the command line by pressing the up-
arrow and down-arrow keys. When you press the up-arrow key, you get the
commands you typed earlier at the command line. You can press Enter at
any time to run the command that is currently displayed.

Saving the history is done using the savehistory function. By default, R
saves the history in a file called .Rhistory in your current working directory.
This file is automatically loaded again the next time you start R, so you have
the history of your previous session available. If you want to use another
filename, use the argument file as follow:

> savehistory(file = "another.Rhistory")

Alternatively, on a PC you can also access this through the menu File ->
Save history... and browse to the folder where you want to save the file
and give it a name..
Furthermore, we can take a look at the history by opening the file in a normal
text editor, like Notepad. If you want to load a history file you saved earlier,
you can use the loadhistory function. This will replace the history with the
one saved in the .Rhistory file in the current working directory. If you want
to load the history from a specific file, you use the file argument again, as
follow:

> loadhistory("another.Rhistory")

On a PC you can also access this through the menu File -> Load history
and browse to the folder where you saved the .Rhistory file and click open.

You can save all the objects (vectors, matrices, data frames, and lists)
and functions that you have created in an .RData file, by using the save
function:

save("myfile.RData")

Alternatively, on a PC you can also access this through the menu File ->
Save workspace file... and browse to the folder where you want to save
the file and give it a name.
If you want to load an image, you use the file argument again, as follow:

10

load("myfile.RData")

On a PC you can also access this through the menu File -> Load workspace
file... and browse to the folder where you saved the .RData file and click
open.

5 Means, correlations, and other statistics

R has many functions for statistical analyses. You can perform many statis-
tical procedures in R by typing commands in the R console or by running
the scripts in the R Editor window. Some advanced functions need to be
installed from the package before they can be executed. Please also keep in
mind that the R language is case sensitive.

5.1 Summary: What is in the data set?

To get quick descriptive statistics for all variables in the dataset, we can use
the summary function:

> data(SP500, package=("MASS"))
> summary(SP500)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.11300 -0.41410 0.04210 0.04575 0.54280 4.98900

5.2 Descriptive statistics

We can get individual descriptive statistics (mean, variance, standard devi-
ation, minimum and maximum) of a single variable:

> mean(SP500)
0.04575
> var(SP500)
0.8982233
> sd(SP500)
0.9477464
> min(SP500)
-7.11300
> max(SP500)
4.98900

11

The cor function will give the correlation matrix of all variables in the
dataset. We can also get the correlation matrix of the second, third, and
fourth variables in the dataset:

> data(waders, package=("MASS"))
> cor(waders [c(2,3,4)])
1.0000000 -0.2057986 -0.2072291
-0.2057986 1.0000000 0.6971051
-0.2072291 0.6971051 1.0000000

6 Regression Analysis

6.1 Simple linear regression model

We use the command lm(Y ∼ X + I) to perform a linear regression, where
Y is the dependent variable and X and I are both independent variables.
The ∼ (tilde) is read "is modeled by" and is used to separate the response
variable from the predictor. We can perform a linear regression example, as
follow:

> data(mammals, package=("MASS"))
> rel <- lm(brain ∼ body, data=mammals)
> summary(rel)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 91.0044 43.5526 2.09 0.0409

body 0.9665 0.0477 20.28 0.0000

Residual standard error: 334.7 on 60 degrees of freedom
Multiple R-squared: 0.8727, Adjusted R-squared: 0.8705
F-statistic: 411.2 on 1 and 60 DF, p-value: < 2.2e-16

The summary function for the linear regression model displays the regression
model with the residuals, estimated coefficients, and R-squared value. By
default, the lm function will print out the estimates of the coefficients. We
can also get more information as needed by using extractor functions listed
in Table 4.

12

Table 4: Some commonly used extractor functions
When dealing with predictive models, here is a list of extractor functions and their effect:

Funtion Effect
summary It is a generic function used to produce result summaries of the results

of various model fitting functions.
plot Generic function for plotting R objects.
coef It is a generic function which extracts model coefficients from objects

returned by modeling functions.
resid It is a generic function which extracts model residuals from objects

returned by modeling functions. All object classes which are returned
by model fitting functions should provide a residuals method.

fitted It is a generic function which extracts fitted values from objects re-
turned by modeling functions.

deviance Returns the deviance of a fitted model object.
predict It is a generic function for predictions from the results of various model

fitting functions. Most prediction methods which are similar to those
for linear models have an argument newdata specifying the first place
to look for explanatory variables to be used for prediction. Time se-
ries prediction methods in package stats have an argument n.ahead
specifying how many time steps ahead to predict.

anova Compute analysis of variance tables for one or more fitted model ob-
jects. When given a single argument it produces a table which tests
whether the model terms are significant. When given a sequence of
objects, anova tests the models against one another in the order spec-
ified.

We can also use the plot function to get diagnostic informations for lm
objects:

> plot(rel)

where rel represents the regression above. Figure 2 shows the basic diagnostic
graphs for our regression model: residual versus fitted plot, normal qq-plots
of the residuals, standardized residual versus fitted plot, and scatter plots
with the regression line overlaid.

Linear regression is the name of a procedure that fits a straight line to
the data. The line is used to predict the value of y (brain weight) for a
known value of x (body weight).5 Suppose we write the equation of the line
as:

y = a+ bx (1)

The regression is used to choose the values of a and b that minimize the sum
or the squares of the residual errors. Using the abline command we get the
graphical representation of our regression:

5The variable x is the predictor variable and y the response variable.

13

Figure 2: Diagnostic plot
The plot method gives the diagnostic information for lm objects. By default the first,
second and fourth plot use the row names to identify the three most extreme residuals.

0 1000 2000 3000 4000 5000 6000

-1
00
0

-5
00

0
50
0

10
00

15
00

20
00

Fitted values

R
es
id
ua
ls

lm(brain ~ body)

Residuals vs Fitted

Asian elephant

Human

African elephant

-2 -1 0 1 2

-6
-4

-2
0

2
4

6
8

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(brain ~ body)

Normal Q-Q

Asian elephant

African elephant

Human

0 1000 2000 3000 4000 5000 6000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Fitted values

S
ta
nd
ar
di
ze
d
re
si
du
al
s

lm(brain ~ body)

Scale-Location

Asian elephant African elephant

Human

0.0 0.2 0.4 0.6 0.8

-5
0

5

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(brain ~ body)

Cook's distance

10.5

0.51

Residuals vs Leverage

African elephant

Asian elephant

Human

14

Figure 3: Mammals data with regression line
As suggested by the scatterplot, there is a linear (and positive) relation.

0 1000 2000 3000 4000 5000

0
10
00

20
00

30
00

40
00

50
00

60
00

brain

bo
dy

> plot(brain, body); abline(rel, col=2, lwd=2)

where the plot command creates a graph window with a scatterplot. Figure
3 offers a representation of our regression goodness.

Given this model, one can predict the brain weight based on our data
set. We can simply use the predict command.6 For example, the predicted
brain weight would be:

> rel <- lm(brain ∼ body, data=mammals[1:50,1:2]);
> pred<- predict(rel, mammals[51:62,1:2]);

where to explore the prediction problem, we hold just a part of this data set
and use the remaining data to make the prediction.

6We need a data frame with column names matching the predictor or explanatory
variable.

15

7 Charts

Summary statistics from our data set can be represented as charts using R’s
graph features. In this section we will first discuss the graphical functions
that can be found in the base R system and the lattice package. Lattice is
an excellent package for visualizing multivariate data, which is essentially a
great set of routines for quickly displaying complex data. There are more R
graphics facilities that can be used in both interactive and batch modes, but
in most cases, interactive use is more productive. This makes it ideal for use
in exploratory data analysis.

7.1 Scatterplots

There are many ways to create a scatterplot in R. The basic function is
plot(x,y), where x and y are numeric vectors denoting the (x, y) points to
plot. Furthermore, if we need to identify a particular point in a plot, the
identify function can be used as follow:

> attach(mtcars);
> plot(wt, mpg, main="Example", xlab="Weight ", ylab="Miles");
> with(identify(wt, mpg,n=2, labels=rownames(mtcars)))

now left click near two points and the element name of that point will be
printed at the bottom, left, top or right of the point, depending on which
side of it you clicked. Figure 4 shows the basic scatterplot for our data frame.

7.2 Histograms and density plots

We can create histograms with the hist function . The option freq=FALSE
plots probability densities instead of frequencies. The option breaks=...
controls the number of bins. Figure 5 with a basic example of histogram is
created as follow:

> hist(mpg)

We can also create a colored histogram with different number of bins, as
follow:

> hist(mtcars$mpg, breaks=12, col="red")

Figure 6 displays the colored histogram for the example above. Histograms

16

Figure 4: Enhanced Scatterplot
A scatterplot provides a graphical view of the relationship between two sets of numbers.
Here we provide examples using the mtcars data frame which is mentioned above. In
particular we look at the relationship between the"Weight of Car" and the "Miles Per
Gallon".

2 3 4 5

10
15

20
25

30

Scatterplot Example

Car Weight

M
ile

s P
er

 G
all

on

Cadillac Fleetwood

Fiat 128

Figure 5: Basic histogram
An histogram provides a graphical view of the given data values. R’s default with equi-
spaced breaks is to plot the counts in the cells defined by breaks. Thus the height of
a rectangle is proportional to the number of points falling into the cell, as is the area
provided the breaks are equally-spaced. Here we provide examples using the mtcars data
frame which is mentioned above.

Histogram of mpg

mpg

Fr
eq
ue
nc
y

10 15 20 25 30 35

0
2

4
6

8
10

12

17

Figure 6: Enhanced histogram
A colored histogram is a representation of tabulated frequencies, shown as adjacent rect-
angles, erected over discrete intervals (bins), with a colored area equal to the frequency of
the observations in the interval.

Histogram of mtcars$mpg

mtcars$mpg

Fr
eq
ue
nc
y

10 15 20 25 30

0
1

2
3

4
5

6
7

are used to plot the density of data, and often for density estimation. How-
ever, it can be a poor method for determining the shape of a distribution
because it is so strongly affected by the number of bins used. The only
difference between Figure 5 and Figure 6 is that a different choice of break-
points is used for the histogram, so that the histogram gives a rather different
impression of the distribution of the data.

7.3 Kernel density plots

Kernal density plots are usually a much more effective way to view the distri-
bution of a variable. Kernel density estimation is a non-parametric method of
estimating the probability density function of a continuous random variable.
It is non-parametric because it does not assume any underlying distribution
for the variable. Here is the code used to plot the histogram in Figure 7:

> d <- density(mpg)
> plot(d)

where the density function returns the density data. As researchers, we
would like to summarize data without sacrificing useful information. As
seen in the previous example, a histogram can be visually frustrating and

18

Figure 7: Kernel Density Plot
We can easily compare the histogram (figure 5, figure 6) and kernel density estimate
constructed using the same data. Kernal density plots are a more effective way to illustrate
the distribution of a variable. The right-skewed shapes of the curve also suggest that the
normal distribution may not be suitable.

10 20 30 40

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

density.default(x = mpg)

N = 32 Bandwidth = 2.477

D
en
si
ty

misleading, especially when bins or midpoints are not appropriately sized or
placed.

7.4 Pie charts

A pie chart of a qualitative data sample consists of pie wedges that shows the
frequency distribution graphically. Figure 8 is created with the pie function
as follow:

> slices <- c(10, 8,4, 20, 8)
> lbls <- c("Italy", "UK", "United States", "Germany", "France")
> pie(slices, labels = lbls, main="Pie Chart of Countries")

where labels= notes a character vector of names for the slices.
Figure 9 with annotated percentages is created as follow:

19

Figure 8: Pie chart
A pie chart for the example data set. I recommend histograms over pie charts because
people are able to judge length more accurately than volume.

Italy

UK

United States

Germany

France

Pie Chart of Countries

Figure 9: Pie chart with annotated percentages
Percentage shows each slice as a calculated percentage of the total. When drawing a pie
chart, ensure that the segments are ordered by size (largest to smallest) and in a clockwise
direction.

United States 8%

France 16%
UK 16%

Italy 20%

Germany 40%

Pie Chart of Countries

20

> slices <- c(4, 8, 8, 10, 20)
> lbls <- c("United States", "France", "UK", "Italy", "Germany")
> pct <- round(slices/sum(slices)*100)
> lbls <- paste(lbls, pct)
> lbls <- paste(lbls,"%",sep="")
> pie(slices,labels = lbls, col=rainbow(length(lbls)),
+ main="Pie Chart of Countries")

Pie charts are not recommended in the R documentation, and their fea-
tures are somewhat limited. Pie charts are very widely used in the business
world and the mass media. However, they have been criticized, and many
experts recommend avoiding them, pointing out that research has shown it
is difficult to compare different sections of a given pie chart, or to compare
data across different pie charts.

8 Manipulating data sets

The programming language in R provides many different functions and mech-
anisms to manipulate data. Getting comfortable with viewing and manipu-
lating multivariate data forces you to be organized about your data.

8.1 Extracting data from data frames

Data frames are arrays as they have columns which are the variables and
rows which are for the experimental observation. Thus we can access the
data by specifying a row and a column. Let’s import the information in
the infert7 data set, an R library, so that different aspects of data frame
manipulation can be demonstrated, and use the function names to see the
column names of the infert data frame:

> attach(infert);
> names(infert)
[1] "education" "age" "parity" "induced" "case"
[6] "spontaneous" "stratum" "pooled.stratum"

To select a specific column from a data frame use the $ symbol or double
square brackets and quotes:

7Infertility after spontaneous and induced abortion.

21

> age <- infert$age
> age <- infert[["age"]]

In this way, the object age is a vector. If you want the result to be a data
frame use single square brackets:

> age <- infert["age"]

When using single brackets it is possible to select more than one column
from a data frame. The result is again a data frame:

> age <- infert["education" , "age"]

Rows from a data frame can also be selected using row numbers. Selecting
cases 10 trough 13 from the infert data frame, we get:

> infert[10:13,]

educ age par induced case spont strat pooled
10 6-11yrs 28.00 2.00 0.00 1.00 0.00 10 19.00
11 6-11yrs 29.00 2.00 1.00 1.00 0.00 11 20.00
12 6-11yrs 37.00 4.00 2.00 1.00 1.00 12 37.00
13 6-11yrs 31.00 1.00 1.00 1.00 0.00 13 9.00

To display specific cases from a data frame you can also use a logical
vector. When you provide a logical vector in a data frame selection, only
the cases which correspond with a TRUE are selected. Suppose you want to
get all people from the infert data frame that have an age of over 43:

> trial <- infert$age > 43
> infert[trial,]

educ age par induced case spont strat pooled
20 6-11yrs 44.00 1.00 0.00 1.00 1.00 20 17.00
103 6-11yrs 44.00 1.00 0.00 0.00 0.00 20 17.00
185 6-11yrs 44.00 1.00 1.00 0.00 0.00 20 17.00

22

A handy alternative is given by the function subset. This allows the use of
the standard indexing conventions so that for example ranges of columns can
be specified easily, or single columns can be dropped:

> subset(infert, age>40 & spontaneous<1)

educ age par induced case spont strat pooled
2 0-5yrs 42.00 1.00 1.00 1.00 0.00 2 1.00
33 6-11yrs 42.00 1.00 1.00 1.00 0.00 33 16.00
43 6-11yrs 41.00 1.00 0.00 1.00 0.00 43 15.00
85 0-5yrs 42.00 1.00 0.00 0.00 0.00 2 1.00
103 6-11yrs 44.00 1.00 0.00 0.00 0.00 20 17.00
116 6-11yrs 42.00 1.00 1.00 0.00 0.00 33 16.00
126 6-11yrs 41.00 1.00 0.00 0.00 0.00 43 15.00
167 0-5yrs 42.00 1.00 0.00 0.00 0.00 2 1.00
185 6-11yrs 44.00 1.00 1.00 0.00 0.00 20 17.00
198 6-11yrs 42.00 1.00 0.00 0.00 0.00 33 16.00
208 6-11yrs 41.00 1.00 0.00 0.00 0.00 43 15.00

8.2 Adding columns (variables) to a data frame

The function cbind can be used to add additional columns to a data frame.
For example, the vector children with the number of children for each woman
can be added to the infert data frame as follows:

> children=trunc(runif(248, min=0, max=9))
> new.infert <- cbind(infert, children=as.data.frame(children))

The left hand side of the = specifies the column name in the infert data frame
and the right hand side is the vector you want to add. The command trunc
takes a single numeric argument x and returns a numeric vector containing
the integers formed by truncating the values in x. Hence, we need to use
as.data.frame function to switch an object into a data frame.

8.3 Combining data frames

Use the function rbind to combine two or more data frames. Consider the
following two data frames rand.df1 and rand.df2 :

23

> part1 <- data.frame(norm = rnorm(5), binom = rbinom(5,7,0.8),
+ unif=runif(5))
> part1

norm binom unif
1 0.44 6.00 0.48
2 0.25 7.00 0.13
3 1.12 6.00 0.93
4 1.51 6.00 0.67
5 -0.05 6.00 0.04

> part2 <- data.frame(chisq = rchisq(5,2), binom = rbinom(5,5,0.1),
+ unif=runif(5))
> part2

chisq binom unif
1 1.81 1.00 0.11
2 0.98 1.00 0.89
3 0.26 1.00 0.31
4 2.72 1.00 0.58
5 0.49 1.00 0.56

These two data frames have two columns in common: binom and unif. When
we only need to combine the common columns of these data frames, you can
use the subscripting mechanism and the function rbind :

> comb <- rbind(part1[, c("unif","binom")], part2[, + c("unif", "bi-
nom")])
> comb

unif binom
1 0.48 6.00
2 0.13 7.00
3 0.93 6.00
4 0.67 6.00
5 0.04 6.00
6 0.11 1.00
7 0.89 1.00
8 0.31 1.00
9 0.58 1.00
10 0.56 1.00

24

The function rbind expects that the two data frames have the same
column names. The function rbind.fill in the reshape package can stack two
or more data frames with any column names:8

> install.packages(’reshape’)
> library(reshape)
> rbind.fill(part1,part2,part1)

8.4 Merging data frames

Two data frames can be merged into one data frame using the function
merge. If the original data frames contain identical columns, these columns
only appear once in the merged data frame. In most cases, you join two
data frames by one or more common key variables. By default the data
frames are merged on the columns with names they both have, but separate
specifications of the columns can be given. Let’s consider the following two
data frames:

> example1 = data.frame(CustomerId=c(1:6),Product=c(rep("Car",3),
+ rep("Radio",3)))
> example2 = data.frame(CustomerId=c(2,4,6),City=c(rep("Turin",2),
+ rep("Milan",1)))
> example1

CustomerId Product
1 1 Car
2 2 Car
3 3 Car
4 4 Radio
5 5 Radio
6 6 Radio

> example2

CustomerId City
1 2.00 Turin
2 4.00 Turin
3 6.00 Milan

8It will fill a missing column with NA.

25

To perform a complete merge of cold and large states, use merge function as
follow:

> merge(example1, example2)

CustomerId Product City
1 2 Car Turin
2 4 Radio Turin
3 6 Radio Milan

This command will work for these examples because R automatically joins
the frames by common variable names, but you would most likely want to
specify the common index to make sure that you were matching on only the
fields you desired.

> merge(example1, example2, by="CustomerId")

I think it’s almost always best to explicitly state the identifiers on which
you want to merge; it’s safer if the input data.frames changes unexpectedly
and easier to read later on.

The merge function takes quite a large number of arguments. There are
four ways of combining data:

• Natural join: To keep only rows that match from the data frames,
specify the argument all=FALSE.

• Full outer join: To keep all rows from both data frames, specify the
argument all=TRUE.

• Left outer join: To include all the rows of your data frame x and only
those from y that match, specify the argument all.x=TRUE.

• Right outer join: To include all the rows of your data frame y and only
those from x that match, specify the argument all.y=TRUE.

26

References

[1] Knell, J. R., and Braun, J., Introductory R: A Beginner’s Guide to
Data Visualisation and Analysis using R, Springer, 2013.

[2] Maindonald, J., and Braun, J., Data Analysis And Graphics Using R,
Cambridge University Press, 2007.

[3] Verzani, J., Using R for introductory statistics, Chapman & Hall/CRC,
Boca Raton, FL, 2005.

27

