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Introduc)on	
  
•  A Monte Carlo method is a computational algorithm 

that relies on repeated random sampling to compute 
its results. 	



•  In  a  nutshell,  instead  of  performing  long  complex 
calculations,  we  perform  a  large  number  of 
“experiments”  using  a  quasi  random  number 
generation and see what happens. 	



•  Monte  Carlo  methods  tend  to  be  used  when  it  is 
infeasible  or  impossible  to  compute an exact  result 
with a deterministic algorithm. 	





Background/History	
  

•  “Monte Carlo” from the gambling town 
of the same name (no surprise).	



•  First applied in 1947 to model diffusion 
of neutrons through fissile materials.	



•  Limited use because time consuming.	


•  Much more common since late 80’.	





The steps in Monte Carlo simulation corresponding to 
the uncertainty propagation  are relatively simple: 

•  Step 1: Create a parametric model, y = f(x1, 
x2, ..., xq).	



•  Step 2: Generate a set of random inputs, 
xi1, xi2, ..., xiq.	



•  Step 3: Evaluate the model and store the 
results as yi.	



•  Step 4: Repeat steps 2 and 3 for i = 1 to n.	


•  Step 5: Analyze the results using histograms, 

summary statistics, confidence intervals, etc.	





EXAMPLE	
  –	
  Area	
  of	
  a	
  figure	
  
•  Cover the figure by a grid, 

calculate  the  number  of 
grid cells which are inside 
and  this  gives  you  the 
area.	



•  Shoot  at  random  at  the  figure. 
Count the bullets that hit it. The 
area of then figure is	


	

S=(Nhit/Ntotal)*S(rectangle)	





Monte	
  Carlo	
  Methods	
  
•  A  Monte  Carlo  simulation  creates  samples 

from a known distribution.	


 

•  For  example,  if  you  know  that  a  coin  is 
weighted so that heads will occur 90% of the 
time,  then  you  might  assign  the  following 
values:	



X 0 1 
fX(x) 0.10 0.90 



Monte	
  Carlo	
  Methods	
  (cont.)	
  

•  If you tossed the coin, the expected value 
would be 0.9	



•  However, a sample simulation might yield the 
results 1, 1, 1, 0, 1, 1, 0, 1, 0, 1.	



•  The average of the sample is 0.7 (close, but not 
the same as the expected average).	





Value	
  at	
  Risk	
  (VaR)	
  
•  “We are X percent certain that we will not lose 

more than V dollars in time T”.	


•  Function of confidence level X and time T.	
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Pseudo Random Number Generators 
•  Monte Carlo simulations are based on computer 

generation of pseudo random numbers.	


•  Starting  point  is  generation  of  sequence  of 

independent,  identically  distributed  uniform 
(U(0,1)) random variables:	


– U(0,1) random numbers of direct  interest  in 

some applications;	


– More commonly, U(0,1) numbers transformed 

to  random  numbers  having  other 
distributions.	
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Example Use of Simulation:  
Monte Carlo Integration  

• Common problem is estimation of                where f is a 
function, x is vector and Ω is domain of integration 

–  Monte Carlo integration popular for complex f and/or Ω. 
• Special case: Estimate                for scalar x, and limits of 
integration a, b. 
• One approach:  

–  Let p(u) denote uniform density function over [a, b]  
–  Let Ui denote i th uniform random variable generated by 

Monte Carlo according to the density p(u)  
–  Then, for “large” n:                  

( )
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Numerical Example of Monte Carlo Integration  

• Suppose interested in                   
–  Simple problem with known solution. 

• Considerable variability in quality of solution for varying b 
–  Accuracy of numerical integration sensitive to integrand 

and domain of integration. 

0
( )

b
∫ x dxsin  

 

 
Integral estimates for varying n 

   
 

 
n = 20 

 

 
n = 200 

 

 
n = 2000 

 
b = π 

(ans.=2) 

 
2.296 

 

 
2.069 

 

 
2.000 

 
b = 2π 

(ans.=0) 

 
0.847 

 

 
0.091 

 

 
-0.0054 
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This problem uses the Monte Carlo integration technique to 
estimate   
 
 
for varying a, b, and n.  Specifically:  

(a) To at least 3 post-decimal digits of accuracy, what is the 
true integral value when a = 0, b = 1? And for a = 0, b = 4?  
(b) Using n = 20, 200, and 2000, estimate (via Monte Carlo) 
the integral for the two combinations of a and b in part (a).  
(c) Comment on the relative accuracy of the two settings. 

2x 2+3x −1dx
a

b
∫

Homework	
  Exercise	
  1	
  	
  



Copulas	
  

Suppose  you  want  to  generate  samples  from 
some distribution with  probability  density  f(x). 
All  you  need  is  a  source  of  uniform  random 
variables,  because  you  can  transform  these 
random  variables  to  have  the  distribution  that 
you want (Sklar’s Theorem).	





General	
  algorithm	
  

•  Generate (w1,w2) from a Multivariate Normal.	


•  Get u = F(w1), v = F(w2) where F(x) is normal 

cumulative distribution function (CDF).	


•  Generate x = G-1(u), y = G-1(v) where G-1 is 

empirical CDF from data.	


•  The  distribution  multivariate  normal 

distribution is important; this is what controls 
dependence at the uniform density stage.	





What	
  is	
  an	
  empirical	
  CDF?	
  	
  

•  Given a vector St of observations (then you can 
use the “ecdf” function in R).	



•  The methodology assigns a 1/n probability to each 
observation,  orders  the  data  from  smallest  to 
largest  in  value,  and  calculates  the  sum  of  the 
assigned  probabilities  up  to  and  including  each 
observation.   The  result  is  a  step  function  that 
increases by  at each datum.	



•  p = G(z) = fraction(St ≤ z) 	


•  G-1(p) = quantile(St, p) 	




