Monte Carlo Simulation
and
Copula Function



Introduction

* A Monte Carlo method 1s a computational algorithm
that relies on repeated random sampling to compute
its results.

* In a nutshell, instead of performing long complex
calculations, we perform a large number of
“experiments” wusing a quasi random number
generation and see what happens.

e Monte Carlo methods tend to be used when it 1is

infeasible or impossible to compute an exact result
with a deterministic algorithm.



Background/History

e “Monte Carlo” from the gambling town
of the same name (no surprise).

* First applied in 1947 to model diffusion
of neutrons through fissile materials.

* Limited use because time consuming.

e Much more common since late 80°.



The steps in Monte Carlo simulation corresponding to
the uncertainty propagation are relatively simple:

Step 1: Create a parametric model, y = f(x1,
X2, ..., Xq).

Step 2: Generate a set of random inputs,
xil, xi2, ..., Xiq.

Step 3: Evaluate the model and store the
results as yi.

Step 4: Repeat steps 2 and 3 fori =1 to n.

Step 5: Analyze the results using histograms,
summary statistics, confidence intervals, etc.



EXAMPLE — Area of a figure

* Cover the figure by a grid, * Shoot at random at the figure.
calculate the number of Count the bullets that hit it. The
grid cells which are inside area of then figure 1s

and this gives you the S=(Nhit/Ntotal)*S(rectangle)
area.




Monte Carlo Methods

e A Monte Carlo simulation creates samples
from a known distribution.

e For example, if you know that a coin 1s
weighted so that heads will occur 90% of the
time, then you might assign the following
values:

X 0 1
f(x) | 0.10 | 0.90




Monte Carlo Methods (cont.)

e If you tossed the coin, the expected value
would be 0.9

 However, a sample simulation might yield the
results 1,1,1,0,1,1,0,1,0, 1.

* The average of the sample 1s 0.7 (close, but not
the same as the expected average).



Value at Risk (VaR)

* “We are X percent certain that we will not lose
more than V dollars in time 77°.

 Function of confidence level X and time 7.

Figu re 20.1 Calculation of VaR from the probability distribution of the change in the
portfolio value; confidence level is X%. Gains in portfolio value are positive; losses
are negative.

100-X)%

VaR loss Gain (loss) over N days



Pseudo Random Number Generators

* Monte Carlo simulations are based on computer
generation of pseudo random numbers.

* Starting point 1s generation of sequence of

independent, 1dentically distributed uniform
(U(0,1)) random variables:

—U(0,1) random numbers of direct interest in
some applications;

—More commonly, U(0,1) numbers transformed
to random  numbers having  other
distributions.



Example Use of Simulation:
Monte Carlo Integration

Common problem is estimation of f f(x)dx where fis a
function, x is vector and Q is domain of integration

— Monte Carlo mtegratlon popular for complex f and/or Q.

*Special case: Estimate f f(x)dx for scalar x, and limits of
integration a, b.

*One approach:
— Let p(u) denote uniform density function over [a, b]

— Let U; denote i " uniform random variable generated by
Monte Carlo according to the density p(u)

— Then, for “large” n:

f f(X)dx =~ —Ef(U )

10



Numerical Example of Monte Carlo Integration

*Suppose interested in fé)sin(x)dx
— Simple problem with known solution.
*Considerable variability in quality of solution for varying b

— Accuracy of numerical integration sensitive to integrand
and domain of integration.

Integral estimates for varying n

n =20 n=200 n=2000
ooy 2296 2069 2000
b=2n = 0847 0091  -0.0054

(ans.=0)
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Homework Exercise 1

This problem uses the Monte Carlo integration technique to
estimate

b o
f 2x 24 3x — ldx
a

for varying a, b, and n. Specifically:

(a) To at least 3 post-decimal digits of accuracy, what is the
true integral value whena=0,b=1? And fora=0, b =47

(b) Using n = 20, 200, and 2000, estimate (via Monte Carlo)
the integral for the two combinations of a and b in part (a).

(c) Comment on the relative accuracy of the two settings.
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Copulas

Suppose you want to generate samples from
some distribution with probability density {(x).
All you need 1s a source of uniform random
variables, because you can transform these
random variables to have the distribution that

you want (Sklar’s Theorem).



General algorithm

Generate (wl,w2) from a Multivariate Normal.
Get u = F(wl), v=F(w2) where F(x) 1s normal
cumulative distribution function (CDF).
Generate x = G'l(u), y = G!(v) where G! is
empirical CDF from data.

The  distribution  multivariate ~ normal
distribution 1s 1mportant; this 1s what controls
dependence at the uniform density stage.



What is an empirical CDF?

Given a vector S, of observations (then you can
use the “ecdf” function in R).

The methodology assigns a 1/n probability to each
observation, orders the data from smallest to
largest in value, and calculates the sum of the
assigned probabilities up to and including each
observation. The result 1s a step function that
increases by at each datum.

p = G(z) = fraction(S, < z)
G !(p) = quantile(S,, p)



